Eidgendssische Ecole polytechnique fédérale de Zurich

Technische Hochschule Politecnico federale di Zurigo

Zirich Federal Institute of Technology at Zurich
Departement of Computer Science 18. November 2019

Markus Puschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler

Algorithms & Data Structures Exercise sheet 9 HS 19

Exercise Class (Room & TA):
Submitted by:
Peer Feedback by:

Points:

Submission: On Monday, 25 November 2019, hand in your solution to your TA before the exercise
class starts. Exercises that are marked by * are challenge exercises. They do not count towards bonus
points.

Remark. Some material for this sheet will be covered in the lecture on Tuesday, 19.11. In the following
we already provide the definitions that are necessary for this sheet.

Definition 1. A graph is called empty if it does not contain any edge. A graph is called complete if
every pair of vertices is adjacent to each other.

Definition 2. A cycle is a sequence vy, ..., Uk, Vx+1 With & > 3 such that all vy, ..., vy are distinct,
v1 = V41 and such that any two consecutive vertices are adjacent. A graph is called acyclic (or a forest)
if does not contain cycles.

Definition 3. A graph is connected if there is a path between every pair of vertices.
Definition 4. A graph which is acyclic and connected is called a tree.

Definition 5. A leaf in a graph is a vertex of degree one.

Exercise 9.1 Forests (1 point).
a) Show that any longest path in a nonempty forest connects two different leaves of this forest.

b) Assume that a forest G = (V, F) has k vertices of odd degree, where k& > 0 (notice that k has to be
even). Show that FE is the union of (the edge sets of) k/2 edge-disjoint paths. Note that the paths do
not need to be vertex-disjoint.

Exercise 9.2 Trees.
a) Show that in any tree there is a unique path between any pair of two different vertices u and v.
b) Show that adding an edge between any pair of non-adjacent vertices of a tree creates a cycle.

c¢) Prove by mathematical induction that the number of edges in a tree with n vertices is n — 1.

Hint: For the inductive step, start with a tree of n + 1 vertices, and find a way to construct a tree of n
vertices. For this construction, it is helpful to use Exercise 9.1 a).

d)* Prove that every connected graph GG with n vertices and n — 1 edges is a tree.

Exercise 9.3 Cycles and minimal vertex degree (1 point).

a) Assume that minimal vertex degree of a graph G is d > 1. Show that G contains a cycle of length
at least d + 1.

Hint: Consider some longest path in G.

b) For every integer d > 1 provide an example of a graph G with minimal vertex degree d that does
not contain any cycle of length strictly greater than d + 1.

Exercise 9.4 Domino (1 point).

a) A domino set consists of all possible (g) + 6 = 21 different tiles of the form [x|y], where = and y
are numbers from {1,2,3,4,5,6}. The tiles are symmetric, so [z|y] and [y|z] is the same tile and
appears only once.

Show that it is impossible to form a line of all 21 tiles such that the adjacent numbers of any conse-
cutive tiles coincide.

b) What happens if we replace 6 by an arbitrary n > 2? For which n is it possible to line up all (g) +n
different tiles along a line?

Exercise 9.5 Data structures for graphs.
Consider three types of data structures for storing a graph G with n vertices and m edges:
a) Adjacency matrix.

b) Adjacency lists:

{35
a3 {it{o]
1]
(i3 {2 {1]
53— {31
o2]

¢) Adjacency lists, and additionally we store the degree of each node, and there are pointers between
the two occurences of each edge. (An edge appears in the adjacency list of each endpoint).

TR

For each of the above data structures, what is the required memory (in ©-Notation)?

Which runtime (worst case, in ©-Notation) do we have for the following queries? Give your answer
depending on n, m, and/or deg(u) and deg(v) (if applicable).

(i) Input: A vertex v € V. Find deg(v).
(ii) Input: A vertex v € V. Find a neighbour of v (if a neighbour exists).
(iii) Input: Two vertices u,v € V. Are u and v adjacent?
(iv) Input: Two adjacent vertices u, v € V. Delete the edge e = {u, v} from the graph.

(v) Input: An edge e = {u,v} € E, i.e., a pointer to the location of that edge in your data structure.
Delete e from the graph.

(vi) Input: Two vertices u,v € V with u # v. Insert an edge {u, v} into the graph if it does not exist
yet. Otherwise do nothing.

(vii) Input: A vertex v € V. Delete v and all incident edges from the graph.

For the last two queries, describe your algorithm.

